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Stokes’s linearized equations of motion are used to calculate the flow field 
generated by a spheroid executing axial translatory oscillations in an infinite, 
otherwise still, incompressible, viscous fluid. The flow field, expressed in terms 
of spheroidal wave functions of order one, is used to develop general expressions 
for the drag on oscillating prolate and oblate spheroids. Formulae for the approxi- 
mate drag, useful in making calculations, are obtained for small values of an 
oscillation parameter. These formulae reduce to the Stokes result in the limit 
when the spheroid becomes a sphere and the steady-state drag for a spheroid as 
the frequency of oscillation becomes zero. The fluid forces on spheroids of various 
shapes are compared graphically. The approximate formulae for the drag are 
integrated over all frequencies to obtain formulae for the drag on spheroids 
executing general axial translatory accelerations. The fluid resistance on the 
spheroid is expressed as the sum of an added mass effect, a steady-state drag and 
an effect due to the history of the motion. A table of added mass, viscous and 
history coefficients is given. 

1. Jntroduction 
Stokes-flow theory has beenused to estimate the drag on spheres (Stokes 1851), 

ellipsoids (Oberbeck 1876) and axially symmetric bodies (Payne & Pel1 1960) 
moving with constant velocity through an otherwise still, viscous, incompres- 
sibIe fluid of infinite extent. Such an estimate is found to be valid provided the 
Reynolds number is less than c. 0.1. For unsteady motion Stokes-flow theory was 
used by Stokes (1851) in his classic study of a sphere executing translatory oscilla- 
tions and by Basset (1888)) who calculated the drag on a sphere moving with an 
arbitrary acceIeration along a rectilinear path. Although they are somewhat 
scant, the experimental reports by Carstens (1952), Odar (1962) and Mockros & 
Lai (1969) indicate a much larger range of applicability, as expected, for theo- 
retical Stokes-flow drag in the case of accelerating bodies than in the case of 
steady motions. 

This paper presents the Stokes-flow theory for the flow field and drag for 
a spheroid executing axial translatory oscillations and the drag on a spheroid 
executing arbitrary axial translatory accelerations. Kanwal ( 1955) analysed the 
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Stokes flow generated by an oscillating spheroid and obtained the general solution 
for the Stokes stream function in terms of a series of spheroidal wave functions of 
the first order. He was, however, unable to determine the constants of integration 
in his solution numerically because of a lack of tables for spheroidal wave func- 
tions at that time. The present paper proceeds further and, by investigating the 
rather complicated spheroidal wave functions, derives formulae for the drag on 
accelerating spheroids. 

Since the analysis for the oblate spheroid motion is parallel to that of the prolate 
spheroid case detailed calculations are presented only for the latter geometric 
shape. 

2. The flow field generated by an oscillating prolate spheroid 
This section is concerned with the formulation of the mathematical representa- 

tion for the fluid motion induced by a prolate spheroid executing translatory 
oscillations in an unlimited, otherwise still, incompressible, viscous fluid. The 
prolate spheroid is defined by ( ~ / b ) ~ +  ( ~ / b ) ~  + ( z / a ) 2  = 1, the oscillation is 
assumed parallel to the z direction, and the origin of the co-ordinate system is the 
instantaneous position of the centre of the prolate spheroid. Prolate spheroidal 
co-ordinates ( t , ~ ,  q5) are natural and the fluid motion is the same in every 
meridian plane q5 = constant. If w2 = x2+y2 and c2 = a2-b2, the prolate 
spheroidal co-ordinates 6 and 7 are defined by 

x + ia= c Gosh (g+ ir). (2.1) 

X = chg, m = C [ ( h 2 -  1) (1 -y)]:. (2.2) 

If, for brevity, h = Gosh< and g = cosv, the transformation (2.1) leads to the 
relations 

The prolate spheroid is thus specified as h = A, = a / c .  
In  a prolate spheroidal co-ordinate system the Stokes-flow equation of motion, 

in terms of the Stokes stream function ‘Y, is (Happel & Brenner 1965, p. 104; 
Kanwal 1955) 

E2 E2----  \ r = O ,  (2.3) ( ::t) 

in which v is the kinematic viscosity of the fluid and 

The velocity components are related to the Stokes stream function by 
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where u(t) is the instantaneous velocity of the oscillating prolate spheroid. A t  
infinity the fluid is assumed still and 

The boundary-value problem (2.3),  (2.6) and (2.7) is solved in the domain 
- 1 6 6 5 1, A, < A by introducing 

u(t) = u,e-iot 
for the spheroid motion and 

Y ( A ,  6, t )  = $(A,  6) e-iwt (2.9) 

for the stream function. The physically meaningful quantities are, of course, only 
the real parts. Substitution of (2.8) and (2.9) into (2.3) and (2.6) yields 

and 

E2(E2+h2/c2)$ = 0 

where h2 = ic2w/u. 
The general solution of (2.10) can be written as 

$(A 6) = $l(k 6) + $ 2 ( A  0, 
provided that E2$, = 0 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

and (E2+h2/~2)$2 = 0. (2.14) 

The appropriate solution of (2.13) is 

W 

$ A 4  5) = 4C”O c aAA2 - 1)  &:+,(A) ( 1  - C2) C + l ( C ) ,  (2.15) 

in which the ar’s are constants of integration, P7+1(6) and &,+,(A) represent 
Legendre functions of the first and second kind, respectively, and the primes 
denote ordinary differentiation of the functions. The appropriate solution of 
(2.14) is 

r = O  

00 

$Ah, 5) = Sc2u0 2 Pn(A2-  I)’Ri?(hh, A )  ( 1  - C2)’S1,(h, C), (2.16) 

in which theP,’s are constants of integration, the R\:(h, A )  are prolate spheroidal 
radial functions of the third kind of order one and the X,,(h,[) are prolate 
spheroidal angle functions of the first kind of order one. The angle functions 
Sin( h, c), which are regular at 6 = k 1, can be expressed as 

n = l  

cn 

(2.17) 

where P:+, is an associated Legendre function of the first kind of order one and 
the prime over the summation sign indicates that the summation is over only 

1-2 
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even values of r when n is odd and over only odd values of r when n is even. The 
expansion coefficients d:" depend on h only and are expanded in powers of h when 
h is small. The series in (2.17) converges absolutely in the domain - 1 < < < 1. 
The radial functions B\%(h, A )  represent spherically converging waves at  large 
distances since the parameter h is complex with a positive imaginary part. The 
converging functions Rit; are chosen for the solution so as to satisfy the boundary 
condition of (2.7). The asymptotic behaviour of these functions is obtained 
from the asymptotic expression for the spherical Hankel functions of the second 
kind. Thus, as A + co, 

R:3,'(h,A)-t(l/hA)exp{+i[hA-B(n+ 1)77]}. (2.18) 

The functions Ri2(h, A )  are related to the prolate spheroidal radial functions of 
the first kind, Ri2(h, A ) ,  and the second kind, Ri:(h, A ) ,  of order one by 

RG(h, A )  = B\2(h, A )  -t iB"(h, A) .  (2.19) 

When the parameter h is not too large the functions Rl2(h, A )  and Ri$(h, A )  can 
be expressed in terms of a series of associated Legendre functions. (Some 
mathematical properties of spheroidal wave functions are given by Lai (1969).) 

Thus, the appropriate general solution for the Stokes stream function is 

$(A,  6) = +C"o [ ar (A2-  1) Q:-+~(A) (1 - 62)  c+~(s)  
r=O 

+ n=l  5 pn(A~-I ) fR~~(h ,A)(1-62) tS l ln(h ,5)] .  (2.20) 

Using the expansion (2.17) for Xln(h, 6) andrearranging the second series in (2.20), 
the solution for the Stokes stream function can be rewritten as 

+(A, 6) = sc2uo c "Ah2- 1) &:,A4 
r=O i[ 

+ n=1,2 5' pn(A2- 1 ) * ~ ~ i ( h ,  ~ ) @ n ( h ) ]  ( 1 - 6 2 )  ~ : + 1 ( < ) ]  9 (2.21) 

in which the prime over the last summation sign indicates that the summation 
is over only odd values of n when r is even and over only even values ofn when 
r is odd. 

The constants of integration ar and pn are determined by using the boundary 
condition given in (2.11). Thus, 

I 
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where 

Because of the orthogonality of Legendre functions (2.22) indicates that 
m 

8 [ar(r + 1) ( r +  2 )  ~ r + l ( ~ o )  + C' ~ n d f n ~ ~ ( h 9  ~ 0 1 ' 1  
n = l ,  2 

- -A ,  ( r  = O), (2.23a) 
10 ( r  = 1,2,3,  ...), (2.23b) 

- 

m 

acr+ 1) (r+2)  Wi- 1) &:+,(A,)+ C' P,dl,"(A%- 1)W2(h,A0)]  [ n=1,2  

= { ; (A%- 1)  (r = 0 ) 7  (2.23 c) 
(Y = 1,2,3,  .. .). (2.23d) 

The a, s are eliminated from (2.23) and after some manipulation we have 

} .  (2.24) 
(Y = 1,2 ,3 ,  ...) 

where &:+l are associated Legendre functions of the second kind of order one. 
The Pn7s are determined by solving this system of simultaneous linear algebraic 
equations. 

3. The general expression for the drag on an oscillating prolate spheroid 
The force exerted on an axially symmetric body moving along its axis of 

revolution is given by (Happel & Brenner 1965, p. 114) 

wherep and ,u denote the pressure and absolute viscosity of the fluid, respectively, 
and the integral is evaluated over the surface of the body. The pressure is deter- 
mined from the 7 component of the Stokes-flow form of the Navier-Stokes 
equations, i.e. 

For the prolate spheroid (3.1) is 

and from (2.9)-(2.14) 

Thus 
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in which the summation is over only odd values of n, since the coefficients dp 
vanish for even values of n. Finally, if ( 2 . 2 3 ~ )  and the relations 

are used, the drag on an oscillating prolate spheroid can be expressed as 

where p is the fluid density. 
Equation (3.7) is the general expression for the drag on the oscillating prolate 

spheroid. The first term on the right-hand side, which is independent of the fluid 
viscosity, is the added mass effect. The quantity 

QA = [(A; - 1) Qi(ho)ll[l - (hi - 1) Qi(4Jl 
is the added mass coefficient for a prolate spheroid accelerating along its axis of 
symmetry and agrees with the known result (Lamb 1932, p. 153). To evaluate the 
drag numerically, the Pn7s must be first determined by solving the infinite system 
of simultaneous equations, (2.24). For purposes of numerical evaluation the drag 
is estimated by using expansions in powers of h. 

4. A formula for the approximate drag on an oscillating prolate 
spheroid 

The system of equations (2.24) can be separated into two sets of simultaneous 
equations, one for even values of r and one for odd values of r :  

m 

n=2 
C' ~ n d ~ n [ Q ~ + l R ~ ~ ' - Q , l ~ l R ~ ~ ] A o  = 0 ( r  = 1,3 ,5 ,  ...). (4.2) 

When n is even, the constants P,, which satisfy the system of homogeneous 
equations (4.2), are not required in the computation of the drag. In  (3.7) the 
summation is over odd values of n and therefore only the solution of (4.1) is 
needed. 

When h is small (Ihl < 10, see Flammer 1957, p. 59), the coefficients d;"(h) and 
the radial functions Rl?(h, A)  can be expanded in power series of h. Using these 
expansions (developed in Lai 1969), in powers of h, for d;"(h) as well as for 
@(h, A,) the first two equations of the system equation (4.1) are 
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where ( r )  indicates that the term above is of order hr. In  (4.3), the right-hand side 
is of order ho; hence, the lowest orders in h for /?, and p3 are ho and h2, respectively. 
The order of p5, estimated from (4.4), is h4. Thus, P1,p2,p5, ... are of order 
ho, h2, h4, ..., respectively. 

Based on these estimated orders, the constants ,8, are expanded in power 
series of h, i.e. 

(4.5) 

p1 = a,,+a1,h+a1,h2+ ..., 

P 5  = 

P 3  = a32 h2 + uBR h3 + . . , , 
a5,h4 + as5h5 + . . . . 

The coefficients anr in (4.5) are determined as follows. The substitution of (4.5) 
into the system given by (4.1) makes each equation of system (4.1) a power series 
in h. The simultaneous consideration of the zeroth-order terms from each equa- 
tion of the power-series version of (4. l) permits the calculation of the lowest order 
coefficient in each p, expansion, i.e. a,,, a54, . . . . The next lowest order coeffi- 
cients in the P, expansions, i.e. a,,, a55, . . . , are determined from the simul- 
taneous solution of the terms in the power-series version of (4.1) that are of 
order h. 

The power-series versions of the first two equations of (4.1) are 

(alo + a,,h + a,,h2 + . . .) ( 1  - Ah2 + . . .) {$[Q:(hQi' + Qi) - Q:'hQi]h2 

-&[Q;Q;f -Q:'Q;]h2-gi[Q+P:~ - Q:'P:]h3+ . . . } A o  

+ 218295i ( 16h6 ) + (a5,h4 + a5,h5 + . . . ) ( 4 ~ ~ 1 + * * * )  - 

(4.7) - _- , ~ ~ , [ Q i Q : ' - & Y & : ]  h"...)Ao+"' = 0. 

Comparing the coefficients of zeroth power in h in (4.6) and (4.7) yields 

2 + &&o[Qi(K!g + Qt) - Q:' &?$IAo - - 3 . 3 ~ 3 2 )  [Q11 Qi' - Q:' QihO = (4.8) 
0 - 1  
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and 

Equations (4.8) and (4.9) are the first two equations of the system of infinite 
simultaneous equations obtained by equating the zeroth power of h in each 
equation of the power-series version of (4.1). The solution of these equations for 
the first few coefficients is 

- 4i i - 4i 

[*(A; + 1) log [(A, + l)/(ho - 111 -h,l’ 
- - 

= (A; - 1) [&:(A&;’ + QA) - Q:’ 
8 

a32 = a54 = m B a l O ’  ” *  * 

(4.10) 

With the aid of the expressions in (4.10), the next lowest order coefficients in 
the ,8, expansions, i.e. a,,, a33, a55, . . . , can be found by simultaneously considering 
the first power of h in each equation of the power-series version of (4.1). The 
results are 

J 
(4.11) 

Defining 

the constants of integration ,8, are thus found in terms of powers of h to be 
K = &(A; + 1) log [(A, f I)/(& - I)] - A,, (4.12) 

h + O(h2), 
-4i  16 

A =  y--s I 
16 

(4.13) 

By substituting the expressions for the Pn’s equation (4.13)’ and the series 
expansions for the d$,’s and Biz’s into (3.7), an expansion in powers of h for the 
approximate drag experienced by an oscillating prolate spheroid is found to be 

Equation (4.14) can also be written as 

(A;- l)Ql(Ao) 32?r,ua2 1 * du Fz = - (. %rab2p [ l - ( A ; - l ) Q , ( A , ) l + ~ ( % )  )z 

which is correct to order h. 

- -  [8npa +- 32npa2 ($)‘I ~ ( t ) ,  (4.15) 
hOK 3 4 K 2  
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When the frequency w = 0, that is, for steady motion, (4.15) becomes 

(4.16) 

the result obtained by Payne & Pel1 (1960) for the drag on a prolate spheroid 
moving at  constant velocity. When ho+co, i.e. a = b, the prolate spheroid 
becomes a sphere. By using the asymptotic expansion 

(4.15) is seen to approach 

1 t a u  
$ m 3 p  + 67rpu2 (%) ] dt - [ 6npa + 67rpu2 (g) "1 U ,  (4.17) 

which is the classical Stokes solution for an oscillating sphere. When A, = 1, 
i.e. b = 0, the prolate spheroid reduces to  a needle-like body, and the drag, as 
expected, is zero. This latter result has also been obtained by Aoi (1955) and 
Breach (1961) in their studies of the steady motion of a prolate spheroid in it 
viscous fluid. 

5. The drag on an oscillating oblate spheroid 
For an oblate spheroid 

2 2  y2 22 -+-+- = 1 
a2 a2 b2 

oscillating along the z axis in an unlimited, otherwise still, incompressible, viscous 
fluid, the analysis is similar to the case of a prolate spheroid. All the equations 
and solutions for the oblate spheroid can be obtained from those for the prolate 
spheroid by a simple transformation to imaginary values of parameters and 
co-ordinates. In  this paper only the drag is presented. 

The formula for the approximate drag on an oblate spheroid oscillating along 
its axis of symmetry, i.e. broadside-on, in a viscous fluid is found from (4.15) by 
substituting ih for A. The resulting drag is 

(Snpb 32npb2 ( w ) ) )  a, (5.1) 

where A$ = b/c,  ql(h$) = 1 -A$ cot-l A$, K* = A$ - (hZ2 - 1) cot-l A$, and the rest 
of the notation is the same as for the prolate spheroid. The functions q,(A) are 
called ellipsoidal harmonics and are related to Legendre functions by 

+- - - -  
h$K* 3 h Z 2 K s 2  2 V  

qJh) = VQ,( ih) .  

c2 = [ ( A t 2  1- 1) a1(h31/[1- ( A t 2  + 1) c I l ( A 3 1  
The quantity 
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is the added mass coefficient for an oblate spheroid accelerating along its axis of 
symmetry and agrees with the known result derived from potential-flow theory 
(Lamb 1932, p. 700). 

When the frequency w is zero, (5.1) becomes the result obtained by Payne 85 
Pel1 (1960) for steady motion. Using an expansion for cot-lh; and letting 
A z - t c o ,  (5.1) approaches the Stokes result, equation (4.17), as the oblate 
spheroid approaches a sphere. 

If A$ = 0, i.e. b = 0, the oblate spheroid degenerates to a circular disk, and the 
expression for the drag experienced by a circular disk oscillating along the 
direction normal to its surface is obtained by letting A: --f 0 in (5.1). The result is 

F' = - &a3 +- 128pa2 1 4 du -- 16,~a+- l2;r2 (:)'I - u. (5.2) 
[3 p 37r (%)I dt [ 

In  this expression, the term $3p(du/dt) is the potential-flow solution drag and 
the term l6puu is the result obtained by Oberbeck (1876) for the drag on a circular 
disk moving a t  constant velocity. 

6. The effect of shape on the drag of oscillating spheroids 
The formula (4.15) for the drag on a prolate spheroid executing translatory 

oscillations along its axis of symmetry in an incompressible viscous fluid is 
derived from an expansion of spheroidal wave functions in a power series of h and 
is correct to the first order in h. The drag on the spheroid may be compared with 
that on a sphere having the same volume $nP3, the quantity ? = (ab2)* being an 
effective 'radius' of the prolate spheroid. If the velocity of the spheroid is 
u(t) = uocoswt, (4.15) may be written as 

= Do[ - (k, N, + k,,/N,) sin wt + ( 1 + k,JN,) cos wt], (6.1) 

where Do = - 87rpauo/ho K is the steady-state drag for the spheroid at  velocity uo; 
N,, sometimes called the Stokes number, is 

(ab2)8w/v = FZw/v; 

k, = +C,h,~[(h$ - l)/A;]* and k, = 2d2[(h$- l)/At]*/3Ao~. 

The characteristics of the force on the oscillating spheroid may be illustrated by 
non-ditnensionalizing and rewriting (6.1) as 

&/Do = K cos (wt + 8), (6.2) 

where K is the ratio of the amplitude of the drag on the oscillating prolate 
spheroid to the drag on the same spheroid moving at  constant velocity uo, and 
0 is the phase shift between the velocity of the spheroid and the force on the 
spheroid. Thus, from (6.1) 

K = WlN, + k,Jiy,)2 + ( 1  + k 2 4 ~ , ) 2 1 ~ ,  (6.3) 

and 

The amplitude ratio K and the phase shift 8 are plotted against N, for various 
values of alb in figure 1. 
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For the case of an oblate spheroid, the dimensionless number N, is defined as 
(a2b)*u/v = T * 2 ~ / ~ .  The equations satisfied by the amplitude ratio K and the 
phase shift 0 are the same as (6.3) and (6.4), respectively, with 

The amplitude ratio and the phase shift for the oblate spheroid are plotted against 
the Stokes number for various values of a/b in figure 2. 

k, * - 1  - eC,h, * * K * l)/h$]* and kz = 42,/2[(h$2+ l)/h,*2]-*h,*~*. 

0 2 4 6 8 10 

Stokes number, N, = (ab2)*w/u 

FIGURE 1. The ratio of the amplitude of the drag on an oscillating prolate spheroid to the 
drag on the same spheroid moving a t  constant velocity, K ,  and the phase shift between the 
velocity of the spheroid and the force on the spheroid, 8, both plotted against the Stokes 
number N,. 

7. The drag on a spheroid moving with an arbitrary velocity along its 
axis of symmetry 

Landau & Lifshitz (1959, p. 96) calculated the resistance force, which is the 
identical to the result obtained by Basset (1888), for a sphere moving recti- 
linearly with arbitrary speed in an incompressible viscous fluid by integrating 
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the drag on an oscillating sphere over all possible frequencies. This technique can 
be similarly used to calculate the drag on a spheroid moving with an arbitrary 
velocity along its axis of symmetry. 

0 2 4 6 8 10 

Stokes number, N, = (aab)3w/v  

FIGUltE 2. The ratio of the amplitude of the drag on an oscillating oblate spheroid to the 
drag on the same spheroid moving a t  constant velocity, K ,  and the phase shift between the 
velocity of the spheroid and the force on the spheroid, 8, both plotted against the Stokes 
number N,. 

In  the previous sections the velocity of the spheroid is periodic, i.e. 

u(t) = uoe-iwt, (7.1) 

where uo is a constant and w is the frequency. If the velocity of the spheroid is not 
periodic but arbitrary, the solution can be constructed from that obtained in the 
previous sections, provided the velocity can be represented as the Fourier 
integral 1 "  

u,e-i"tdw, u, = -1 2n -a U(T)  eiw7 d ~ ,  ( 7 4  
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where u, is the Fourier transform of u( t ) .  Since the equations involved in this 
problem are linear, the total drag on the accelerating spheroid can be written as 
the integral of the drag on the spheroid with velocities that are the separate 
Fourier components Thus the total drag corresponding to a velocity u( t )  
given in (7.2) is 

a t )  = 1 c0 4(t, w )  dw, (7 .3)  
- m  

in which PU(t, w )  is the drag corresponding to a velocity of u, e-iwt. 
If the approximate drag given in (4.15) is used then F,(t, w )  can be written as 

where (duldt), = -hum.  The substitution of (7.4) into (7.3) yields 

The last integral iifound as (Landau & Lifshitz 1959, p. 96; Yih 1969, p. 376) 

The insertion of (7.6) into (7.5) gives the approximate drag on a prolate spheroid 
moving along its axis of symmetry with arbitrary velocity through an incom- 
pressible viscous fluid: 

32nb2p u 4 du(r)/dr - dr. (7.7) 

In  (7.7) the fluid resistance consists of three parts. The first is the added mass 
effect, the second is the steady-state drag and the last is the effeot due to the 
history of the motion. The constant C,, = 32/3(h;-  1) K~ may be defined as the 
history coefficient for the prolate spheroid accelerating along its axis of symmetry. 

For an oblate spheroid moving with arbitrary velocity along its axis of sym- 
metry in a viscous fluid the approximate drag may be found either by integrating 
(5.1) with respect to the frequency or by substituting ih, for ha into (7.7). The 
result is 

3 ( h p l ) ~ ~  (;I) (t-r)* 

32na2p u * du(r) /dr  
- d7, (7.8) 

3(hz2+ 1 ) ~ " ~  ( G )  
and the quantity C& = 32/3(h$2 + 1) K * ~  may be defined as the history coefficient 
for the oblate spheroid accelerating along its axis of symmetry. 



14 R. Y.  S. Lai and L. P. Moclcros 

The expression for the drag on a circular disk accelerating along the direction 
normal to its surface is obtained by letting A$ --f 0 in (7.8). The result is 

The history coefficient for the circular disk is C, = 128/3n2. When the spheroid 
becomes a sphere, i.e. h,,-+co, (7.7) and (7.8) both approach the result obtained 
by Basset (1888) and by Landau & Lifshitz (1959). 

Prolate spheroid 
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c: c: c; 
0.5000 1*0000 6.0000 
0.8047 0.9352 5.2479 
1.1151 0.9053 4.9175 
1.7426 0.8787 4.6325 
2.3743 0.8673 4.5137 
3.0078 0.8615 4.4526 
3.6422 0.8580 4.4169 
4.2772 0.8558 4.3942 
4-9126 0.8543 4.3788 
5.5483 0.8532 4.3680 
6.1841 0.8525 4.3600 

03 0.8488 4.3231 

TABLE 1. Added mass, viscous and history coefficients for some prolate and 
oblate spheroids 

Finally, it is convenient to write the approximate drag on a spheroid moving 
in an arbitrary manner along its axis of symmetry in the following form: 

du E(t) = d7, (7.10) 

where m is the mass of displaced fluid, C, is the added mass coefficient, C, is the 
viscous shape coefficient for Stokes steady-state drag, R is dimension b for the 
prolate spheroid and dimension a for the oblate spheroid, C, is the history 
coefficient and A is the cross-sectional area normal to the motion. For some 
representative values of alb, C,, C, and C,, for prolate and oblate spheroids are 
given in table 1.  
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