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Stokes’s linearized equations of motion are used to calculate the flow field
generated by a spheroid executing axial translatory oscillations in an infinite,
otherwise still, incompressible, viscous fluid. The flow field, expressed in terms
of spheroidal wave functions of order one, is used to develop general expressions
for the drag on oscillating prolate and oblate spheroids. Formulae for the approxi-
mate drag, useful in making calculations, are obtained for small values of an
oscillation parameter. These formulae reduce to the Stokes result in the limit
when the spheroid becomes a sphere and the steady-state drag for a spheroid as
the frequency of oscillation becomes zero. The fluid forces on spheroids of various
shapes are compared graphically. The approximate formulae for the drag are
integrated over all frequencies to obtain formulae for the drag on spheroids
executing general axial translatory accelerations. The fluid resistance on the
spheroid is expressed as the sum of an added mass effect, a steady-state drag and
an effect due to the history of the motion. A table of added mass, viscous and
history coefficients is given.

1. Introduction

Stokes-flow theory has been used to estimate the drag on spheres (Stokes 1851),
ellipsoids (Oberbeck 1876) and axially symmetric bodies (Payne & Pell 1960)
moving with constant velocity through an otherwise still, viscous, incompres-
sible fluid of infinite extent. Such an estimate is found to be valid provided the
Reynolds number is less than ¢. 0-1. For unsteady motion Stokes-flow theory was
used by Stokes (1851) in his classic study of a sphere executing translatory oscilla-
tions and by Basset (1888), who calculated the drag on a sphere moving with an
arbitrary acceleration along a rectilinear path. Although they are somewhat
scant, the experimental reports by Carstens (1952), Odar (1962) and Mockros &
Lai (1969) indicate a much larger range of applicability, as expected, for theo-
retical Stokes-flow drag in the case of accelerating bodies than in the case of
steady motions.

This paper presents the Stokes-flow theory for the flow field and drag for
a spheroid executing axial translatory oscillations and the drag on a spheroid
executing arbitrary axial translatory accelerations. Kanwal (1955) analysed the
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2 R.Y.S8. Lai and L. F. Mockros

Stokes flow generated by an oscillating spheroid and obtained the general solution
for the Stokes stream function in terms of a series of spheroidal wave functions of
the first order. He was, however, unable to determine the constants of integration
in his solution numerically because of a lack of tables for spheroidal wave func-
tions at that time. The present paper proceeds further and, by investigating the
rather complicated spheroidal wave functions, derives formulae for the drag on
accelerating spheroids.

Since the analysis for the oblate spheroid motion is parallel to that of the prolate
spheroid case detailed calculations are presented only for the latter geometric
shape.

2. The flow field generated by an oscillating prolate spheroid

This section is concerned with the formulation of the mathematical representa-
tion for the fluid motion induced by a prolate spheroid executing translatory
oscillations in an unlimited, otherwise still, incompressible, viscous fluid. The
prolate spheroid is defined by (z/b)2+ (y/b)?+ (z/a)? = 1, the oscillation is
assumed parallel to the z direction, and the origin of the co-ordinate system is the
instantaneous position of the centre of the prolate spheroid. Prolate spheroidal
co-ordinates (£,7,¢) are natural and the fluid motion is the same in every
meridian plane ¢ = constant. If @2 =22+%? and c? = a%?—b?% the prolate
spheroidal co-ordinates £ and # are defined by

z+ 4w = ccosh (§+ 7). (2.1)
If, for brevity, A = cosh{ and { = cosy, the transformation (2.1) leads to the
relations z=cA, @=c[(X—1)(1-E)}. (2.2)

The prolate spheroid is thus specified as A = Ay = afe.

In a prolate spheroidal co-ordinate system the Stokes-flow equation of motion,
in terms of the Stokes stream function ¥, is (Happel & Brenner 1965, p. 104;
Kanwal 1955)

10
efpe_— %\ w =
K (E v@t)ly 0, (2.3)
in which v is the kinematic viscosity of the fluid and
1 o2 o2
2 2_1)— — )
B? = 62(/\2_€2) [(/\ 1) a/\2+ (1 § )agzjl . (2.4)
The velocity components are related to the Stokes stream function by
_ 1 oY
AT RESDie—R e
(2.5)
1 oY
vy =

1At ax”
The boundary conditions at the surface of the prolate spheroid are

O [08 = c2(A2— 1) Luft)

8‘1”/8/\ = —(;2/\(]_ -—€2) u(t)} at A= /\0, (2.6)



Drag on prolate and oblate spheroids 3

where u(t) is the instantaneous velocity of the oscillating prolate spheroid. At
infinity the fluid is assumed still and

. — 1 ¥ 0
A7 e2(A2 2_enk or T
A DA - 2 as A->o0. (2.7
_ 1 oY 0
I G O

The boundary-value problem (2.3), (2.6) and (2.7) is solved in the domain
-1 < <1, Ay < A by introducing

u(t) = ug et (2.8)
for the spheroid motion and

Y(A,8,1) = (A, §) et (2.9)

for the stream function. The physically meaningful quantities are, of course, only
the real parts. Substitution of (2.8) and (2.9) into (2.3) and (2.6) yields

Ez(Ez_*_hZ/CZ)]ﬁ =0 (2-10)
and HploA = —c(1-§?) /\uo} at A=\ (2.11)
o Jog = AN~ 1)u, I '

where h? = ic?w/v.
The general solution of (2.10) can be written as

‘ﬁ(/\, g) = ‘.”1(/\, €)+¢2(A’ g)’ . (212)

provided that E¥r =0 (2.13)

and (E?4-h3[c) ¢y = 0. (2.14)
The appropriate solution of (2.13) is

VA0 = Jeuy 3,08~ 1) Qs (1= ) Pra(9), (2.15)

in which the «,’s are constants of integration, F, () and Q,.,(A) represent
Legendre functions of the first and second kind, respectively, and the primes
denote ordinary differentiation of the funections. The appropriate solution of
(2.14) is

VoA, 0) = Bty 3 Bo(N— DRRE(RA) (1 - {938,k O),  (2.16)
n=1

in which the £,,’s are constants of integration, the RE)(k, A) are prolate spheroidal
radial functions of the third kind of order one and the S,.(k,{) are prolate
spheroidal angle functions of the first kind of order one. The angle functions
81.( 2, &), which are regular at { = + 1, can be expressed as

Sk ) = g’ld}“(h) PLy(O, (2.17)

where P}, is an associated Legendre function of the first kind of order one and
the prime over the summation sign indicates that the summation is over only

I-2



4 R.Y.S8. Lar and L. F. Mockros

even values of » when % is odd and over only odd values of r when % is even. The
expansion coefficients d1™ depend on & only and are expanded in powers of 2 when
k is small. The series in (2.17) converges absolutely in the domain —1 < { < 1.
The radial functions RB)(k, A) represent spherically converging waves at large
distanoes since the parameter & is complex with a positive imaginary part. The
converging funetions R{3) are chosen for the solution so as to satisfy the boundary
condition of (2.7). The asymptotic behaviour of these functions is obtained
from the asymptotic expression for the spherical Hankel functions of the second
kind. Thus, as A — o0,

REh,A)—>(1/hA) exp { +i[hA —L(n + 1) 7]} (2.18)

The functions R3)(h, A) are related to the prolate spheroidal radial functions of
the first kind, R{I)(h,A), and the second kind, R2)(h, A), of order one by

B§(R, A) = Bk, A) +iRG(R, A). (2.19)

When the parameter % is not too large the functions R (k, A) and R (h, A) can

be expressed in terms of a series of associated Legendre functions. (Some

mathematical properties of spheroidal wave funections are given by Lai (1969).)
Thus, the appropriate general solution for the Stokes stream funection is

Y0 = detu, [éoaw— 1) Q) (1= 8) P®
+ 3 A0 - DERG(LA) (1= 809|220

Using the expansion (2.17) for 8y,,(%, {) and rearranging the second series in (2.20),
the solution for the Stokes stream function can be rewritten as

YL = betuy 3 {[ A1) Q)

r=0

w

+ B AN DERBB N (1-8) P 221
in which the prime over the last summation sign indicates that the summation
is over only odd values of » when r is even and over only even values of » when
r is odd.

The constants of integration «, and f, are determined by using the boundary
condition given in (2.11). Thus,

~2(1=8) = 3 2 {[ontr + 1 (42 el

+ 3 A TR B (1= Pt
(2.22)

(-1 =1 T {|a08-1 Q)

¥ 5 Ald= 1R ERAA) d%”(h)] [—(r+1)(r+2) R+1(§)]},
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where R®(R, Ay) = [(/\2 1)t RE)(h, A)];,-
Because of the orthogonality of Legendre functions (2.22) indicates that
ot 042 Qalh)+ 34, TR A |

_ =24 (r=0), (2.234a)
= o (r=1,2,3,...), (2.23b)
%(r+1>(r+2)[ (1) Q)+ X B dHAG— 1) Rﬁa(hA)]
n=1,2
{—(/\%—1) (r=0), (2.23¢)
0 (r=1,2,3,..). (2.23d)

The a, s are eliminated from (2.23) and after some manipulation we have

2 /fndl"[Qm (Ag) BEY (B, Ag) — @i1(Ag) BEA(R, A0)]
2/((A2—1) (r = 0)
={0 ’ (r=1,2,3,...)}' (2.24)

where @}, are associated Legendre functions of the second kind of order one.
The B,’s are determined by solving this system of simultaneous linear algebraic
equations.

3. The general expression for the drag on an oscillating prolate spheroid

The force exerted on an axially symmetric body moving along its axis of
revolution is given by (Happel & Brenner 1965, p. 114)

E:ﬂf‘ngdﬂ—2ﬂﬂf%lﬂm}’dﬂ, (3.1)

where p and y denote the pressure and absolute viscosity of the fluid, respectively,
and the integral is evaluated over the surface of the body. The pressure is deter-
mined from the % component of the Stokes-flow form of the Navier-Stokes

equations, i.e. op w8 , 10
5 = oo [(E _355) IF] (3.2)
For the prolate spheroid (3.1) is
1 10
= 2 L — 2
7= c,mf_l [(/\ )a/\ (E at) V2 IF]Mdg (3.3)
and from (2.9)—(2.14)
19 h? . h? .
(Ez__é;) = e, B = et (3.4)
2 p—lwt (1
Thus =t 1 -y Breonn| &, (3:5)
C —1 3/\ Ao

or F, = $muchu et [(/\%" 1) @1(Ag) 2o + §' B 5™ Ao(AZ— 1) RE)(A, /\0)] » (3.6)
n=1
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in which the summation is over only odd values of n, since the coefficients d§"
vanish for even values of n. Finally, if (2.23¢) and the relations
. e 1
hzuoe‘“’tzrﬁu(t) =__d_u A=<= ?

v vdt® " ¢ (a2-b2)}
are used, the drag on an oscillating prolate spheroid can be expressed as

- 4 (A3=1)@:(Ay) | du  dmuchu
‘F; - 377ab2p l:l_(A%_l)Ql(Ao)jI

where p is the fluid density.

Equation (3.7) is the general expression for the drag on the oscillating prolate
spheroid. The first term on the right-hand side, which is independent of the fluid
viscosity, is the added mass effect. The quantity

Cq = [(AF— 1) @1(A)]/[1 = (AF— 1) @€1(A,)]

is the added mass coefficient for a prolate spheroid accelerating along its axis of
symmetry and agrees with the known result (Lamb 1932, p. 153). To evaluate the
drag numerically, the 8,’s must be first determined by solving the infinite system
of simultaneous equations, (2.24). For purposes of numerical evaluation the drag
is estimated by using expansions in powers of 4.

T T Ak W REG, A, (37

4. A formula for the approximate drag on an oscillating prolate
spheroid

The system of equations (2.24) can be separated into two sets of simultaneous
equations, one for even values of 7 and one for odd values of r:

uo’ ’ ’ 2 AZ_ 1 (T =0 ’
RN R T e A NN SRS
S hu @ R QR BEL, =0 =135, (42)

When #» is even, the constants f,, which satisfy the system of homogeneous
equations (4.2), are not required in the computation of the drag. In (3.7) the
summation is over odd values of » and therefore only the solution of (4.1) is
needed.

When £ is small (|h] < 10, see Flammer 1957, p. 59), the coefficients d}"(h) and
the radial functions R®)(h, A) can be expanded in power series of k. Using these
expansions (developed in Lai 1969), in powers of A, for d!*(h) as well as for
R®(h, A,) the first two equations of the system equation (4.1) are

Brdp QL EYY — QF R, + B d5° [ B — QF BR),,
© © @ (-8)
+ B AP (L BR — QF BRIy + ... = 2/(AF=1),  (4.3)
@) (~6) )
ﬂ(l g%l (ER '(jZQ)?%' Rila+ ,3(30 f)iéa[Q% Ry '( j;;?%' R#15,

+ B AP [Q5 RY — Q3 R®1,,+...= 0, (4.4)
(2) (—6) 0)
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where (r) indicates that the term above is of order 4. In (4.3), the right-hand side
is of order A°; hence, the lowest orders in k for 8, and g, are £° and k2, respectively.
The order of f;, estimated from (4.4), is k% Thus, §y, S, fs, ... are of order
RO, h2 R4, ..., respectively.

Based on these estimated orders, the constants f, are expanded in power
series of A, i.e.

f1=0pt+anh+ah?+...,
fs= g ht+agh3+ ..., (4.5)
Bs = ag bt +as h5+

The coefficients a,, in (4.5) are determined as follows. The substitution of (4.5)
into the system given by (4.1) makes each equation of system (4.1) a power series
in k. The simultaneous consideration of the zeroth-order terms from each equa-
tion of the power-series version of (4.1) permits the calculation of the lowest order
coefficient in each §, expansion, i.e. @9, @39, @54, --. - The next lowest order coeffi-
cients in the g, expansions, i.e. a,q, @3, @, ..., are determined from the simul-
taneous solution of the terms in the power-series version of (4.1) that are of
order A.

The power-series versions of the first two equations of (4.1) are

) () Greiaar + @ - e e

—AIQ1 QY —OF Q1R - HQLPY — QY PIIR* + ...},

+525¢
+(a32h2+a33h3+”')(T%hz_'_"_) (W)

x {[Q1OF — QY Q3] + 112,01 Q3 — QF Q31 h% — 1 25[Q1 Q8 — Q¥ QR1h2 + ..},

ht 4218295
+ (a54h4+a55h5+ ...) (-4:—8-5T+ ...) (—IW)

x{[Q195 — Q1 @51+ ... 7o+ xX-v
(@t a it ) (g + ) (G ) (QBQY — @F @11+ HGHAQY +b) — 0 AQ)

— S5{Q5QY — @Y QLA — HIQAPY — Q¥ P+ ..,

gttt ) (1o ) (E22F) sty - oy o

5h2
— o5 @3 QY — QF Qi1 h2+ ...}y, + (a5 ht + agsh®+...) (_ + )

(@t aph+ah?+...) (1 ~Fh2+. ..

(4.6)

297
x (%ﬁﬂz) {[QLQY — QY QL] + £235[QL QY — QY QL] A2
el — Q3 QR1A%+ .. Jy + e = 0. (4.7)

Comparing the coefficients of zeroth power in % in (4.6) and (4.7) yields

+ §iay [QHAQY + @) — Q1 AQf, — (Ftano — §105,) [Q1 Q5 — Q1 G511, = 2 w7 (48)
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and

— , , 25z 36757, , ,
(50 s (132) [Q1Q% — @} 5120 — (% g9 — a54) (@305 — Q3 },]Ao = 0.

(4.9)
Equations (4.8) and (4.9) are the first two equations of the system of infinite
simultaneous equations obtained by equating the zeroth power of A in each

equation of the power-series version of (4.1). The solution of these equations for
the first few coefficients is

—43 —4z
(A3— 1) [Q1H(AQY + Q%) — OF AQE],,  [3(A3+ 1) 1og (Ao +1)/(Ag— 1)]—A,]’

_ 8
U2 = 555 %100 U4 = 597675 D105 -+ -

Ay =

(4.10)

With the aid of the expressions in (4.10), the next lowest order coefficients in
the 3, expansions, i.e. &;q, @3, @55, - .., ¢an be found by simultaneously considering
the first power of & in each equation of the power-series version of (4.1). The
results are

8(A§— 1) [Q1 P} — Q1 Pily, - —16

@y = = )
U 3BAR+ Dlog (A + 1)/(A—1)) = Al 3[H(AF+ 1) log [(Ag+ 1)/(Ag— 1)) = A,J*
@33 = 35501, 55 = ggre7sdars -+ -

(4.11)
Defining k= 3AZ+ 1) log [(Ae+1)/(Ag—1)] = A,, (4.12)
the constants of integration £, are thus found in terms of powers of 4 to be
— 43
ﬂl = _K'—_3 2h+0(h2)’
2 [—4
= — 16,4 4
By = 225[ = k 3/<2h +O(k )}, (4.13)
= _8_ —4 4__12 5 6
Fs = 297675[ K 3/<2h +Olk )J'

By substituting the expressions for the g,’s equation (4.13), and the series
expansions for the di™’s and R{®’s into (3.7), an expansion in powers of % for the
approximate drag experienced by an oscillating prolate spheroid is found to be

o (A3—1)@y(Ay) Tdw dmpch*u
Fz = %ﬂabzp [1 — ()\%—— I)QI(AO)] % 3Q1( 0)

1[6
X {772 [; @i(%) —;5 2 QAo b+ O(kZ)]} . (4.14)
Equation (4.14) can also be written as

o 2] S

8mua  32mua® (w\*t
- [—_on el (5;) }u(t), (4.15)

which is eorrect to order h.
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When the frequency w = 0, that is, for steady motion, (4.15) becomes

S8muau

Aol2(A+ 1) log [(Ag+ 1)/(Ae— 1)] = Ap]°

the result obtained by Payne & Pell (1960) for the drag on a prolate spheroid
moving at constant velocity. When A,—>c0, i.e. @ = b, the prolate spheroid
becomes a sphere. By using the asymptotic expansion

F=-

(4.16)

Atl _1 1 1
M1 A, TIR TR

tlog
(4.15) is seen to approach

3 %
F,= [—ﬂa3p+ 6mpa? ( ! ) ] Cflt [671,ua+ 6mpa® (a;) ] u, (4.17)

which is the classical Stokes solution for an oscillating sphere. When A, = 1,
i.e. b = 0, the prolate spheroid reduces to a needle-like body, and the drag, as
expected, is zero. This latter result has also been obtained by Aoi (1955) and
Breach (1961) in their studies of the steady motion of a prolate spheroid in a
viscous fluid.

5. The drag on an oscillating oblate spheroid

For an oblate spheroid
2 oy 22
ETatRE=

1
oscillating along the z axis in an unlimited, otherwise still, incompressible, viscous
fluid, the analysis is similar to the case of a prolate spheroid. All the equations
and solutions for the oblate spheroid can be obtained from those for the prolate
spheroid by a simple transformation to imaginary values of parameters and
co-ordinates. In this paper only the drag is presented.

The formula for the approximate drag on an oblate spheroid oscillating along
its axis of symmetry, i.e. broadside-on, in a viscous fluid is found from (4.15) by
substituting ¢A for A. The resulting drag is

A2+ 1) qu(AF) T, 32mub? )ildu
_ __ 142 — —_—
k= {3"“ bp[1_(/\:2+ g, 3] " 3AF k2 \2w) [d

8mub  32mub? [(w\t
{A*K*+§i$zaa % }“’ (5.1)
where A = b/c, ;(AF) = 1 = AF cot L AF, «* = A — (Af2—1) cot—* A¥, and the rest

of the notation is the same as for the prolate spheroid. The functions ¢,(A) are
called ellipsoidal harmonics and are related to Legendre functions by

4(A) = 11, (iA).

The quantity
C% = [(AF2+ D@ (AN - (AF2+ D@a(AF)]
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is the added mass coefficient for an oblate spheroid accelerating along its axis of
symmetry and agrees with the known result derived from potential-flow theory
(Lamb 1932, p. 700).

When the frequency o is zero, (5-1) becomes the result obtained by Payne &
Pell (1960) for steady motion. Using an expansion for cot—'Af and letting
A¥ o0, (5.1) approaches the Stokes result, equation (4.17), as the oblate
spheroid approaches a sphere.

If A¥ = 0,i.e. b = 0, the oblate spheroid degenerates to a circular disk, and the
expression for the drag experienced by a circular disk oscillating along the
direction normal to its surface is obtained by letting AF — 0in (5.1). The result is

128ua? ( 1 \*]du 128ua? a))%
— _|8y8 L — . 5.2
£, [3ap+ 37 (21}(1)) ] dt [IG'MH. 37 (2V w (5.2)

In this expression, the term 3a3p(du/dt) is the potential-flow solution drag and
the term 16uaw is the result obtained by Oberbeck (1876) for the drag on a circular
disk moving at constant velocity.

6. The effect of shape on the drag of oscillating spheroids

The formula (4.15) for the drag on a prolate spheroid executing translatory
oscillations along its axis of symmetry in an incompressible viscous fluid is
derived from an expansion of spheroidal wave functions in a power series of h and
is correet to the first order in k. The drag on the spheroid may be compared with
that on a sphere having the same volume 4773, the quantity 7 = (ab2)?} being an
effective ‘radius’ of the prolate spheroid. If the velocity of the spheroid is
u(t) = u, cos wi, (4.15) may be written as

F, = Dy[ — (ky Ng + ko Ng) sin wit + (1 + kg Ng) cos wt], (6.1)

where D = — 8mpuau,/A,« is the steady-state drag for the spheroid at velocity u,;
Ng, sometimes called the Stokes number, is

(ab?}oly = Fov;
ky = 30420k [(A3—1)/A3F and  ky = 2(2[(AF—1)/A3]}/3Aok.

The characteristics of the force on the oscillating spheroid may be illustrated by
non-dimensjonalizing and rewriting (6.1) as

F,|D, = K cos (wt+6), (6.2)

where K is the ratio of the amplitude of the drag on the oscillating prolate
spheroid to the drag on the same spheroid moving at constant velocity #«,, and
6 is the phase shift between the velocity of the spheroid and the force on the
spheroid. Thus, from (6.1)

K = [(ky Ng + ko Ng)? + (1 + kg Ng) 112, (6.3)
key Ng + kgy/ N,
-1 14'S 2 S
and 6 = tan (——————1 i Ve ) (6.4)

The amplitude ratio K and the phase shift ¢ are plotted against Ng for various
values of a/b in figure 1.
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For the case of an oblate spheroid, the dimensionless number Ny is defined as
(a?b)}wv = 7*?w[v. The equations satisfied by the amplitude ratio K and the
phase shift 0 are the same as (6.3) and (6.4), respectively, with

K= 3OEAS TR D)ASE and B = B2/2[(02+ 1)AREAT k¥,
The amplitude ratio and the phase shift for the oblate spheroid are plotted against
the Stokes number for various values of a/b in figure 2.

5

alb=10-0

Amplitude ratio, K
)

027

Phase shift, 6

1 ! 1
0 2 4 6

Stokes number, N, = (ab?)¥w/y

0 |-

10

Figure 1. The ratio of the amplitude of the drag on an oscillating prolate spheroid to the
drag on the same spheroid moving at constant velocity, K, and the phase shift between the
velocity of the spheroid and the force on the spheroid, 6, both plotted against the Stokes
number Nj.

7. The drag on a spheroid moving with an arbitrary velocity along its
axis of symmetry

Landau & Lifshitz (1959, p. 96) calculated the resistance force, which is the
identical to the result obtained by Basset (1888), for a sphere moving recti-
linearly with arbitrary speed in an incompressible viscous fluid by integrating
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the drag on an oscillating sphere over all possible frequencies. This technique can
be similarly used to calculate the drag on a spheroid moving with an arbitrary
velocity along its axis of symmetry.

13

I

2
alb=10 5 3 %

Amplitude ratio, K
~1
T

(V3]
T

Jd

027

Phase shift,

0ln

I 1 | L
0 2 4 6 8 10
Stokes number, Ny = (a”b)g‘w/v

Ficure 2. The ratio of the amplitude of the drag on an oscillating oblate spheroid to the
drag on the same spheroid moving at constant velocity, K, and the phase shift between the
velocity of the spheroid and the force on the spheroid, 8, both plotted against the Stokes
number N,

In the previous sections the velocity of the spheroid is periodie, i.e.
u(t) = uyetot, (7.1)

where u, 18 a constant and v is the frequency. If the velocity of the spheroid is not

periodic but arbitrary, the solution can be constructed from that obtained in the

previous sections, provided the velocity can be represented as the Fourier

integral © 1 (e

u(t) =f u, e dw, u,= ——J. () et dr, (7.2)
21} _

— @
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where u, is the Fourier transform of u(¢). Since the equations involved in this
problem are linear, the total drag on the accelerating spheroid can be written as
the integral of the drag on the spheroid with velocities that are the separate
Fourier components u,e~%?. Thus the total drag corresponding to a velocity u(t)
given in (7.2) is ©
) = F (i, 0)dw, (7.3)
in which F, (¢, ») is the drag corresponding to a velocity of u, e~
If the approximate drag given in (4.15) is used then F,(f, w) can be written as
(A2-1)Q,(A,) (du) ..  8mua .
_ 4 2 o it dwt 3 77 —iwt
Bt 0) = = Retmanp | 2] (@) o e e

16mpb®  (1+7) (2v)t du) iut
JE_1)x2 o} (Tcli s 04

where (du/dt), = —iwu,. The substitution of (7.4) into (7.3) yields
(A§—1)@1(A) ]du(t) 8muau(t)
= —Anah? -
E() = —gmably [1 TN Q)| & Ak
16mpb2(2v)t = (1+7) (d_?ﬁ) iut
—R,e{3(/\3__1)K2f_00 = \ 7 we dw}. (7.5)

The last integral is found as (Landau & Lifshitz 1959, p. 96; Yih 1969, p. 376)

© (1+41) du) ot g 2)‘} t du(r)/dr
Re{f_a0 el b7 we da), = (ﬂ o=t dr. (7.6)
The insertion of (7.6) into (7.5) gives the approximate drag on a prolate spheroid
moving along its axis of symmetry with arbitrary veloeity through an incom-
pressible viscous fluid:

F(t) = —4mab%p [ (AF—1) @ (A) ]du 8muau

1—(A§—1) @1(A) dt Ak
32nb%  (v\i [t du(r)/dr
T3 -1)k2 (5) Iy e SUCCICED)

In (7.7) the fluid resistance consists of three parts. The first is the added mass
effect, the second is the steady-state drag and the last is the effeot due to the
history of the motion. The constant Cy = 32/3(A2— 1) k2 may be defined as the
history coefficient for the prolate spheroid accelerating along its axis of symmetry.

For an oblate spheroid moving with arbitrary velocity along its axis of sym-
metry in a viscous fluid the approximate drag may be found either by integrating
(5.1) with respect to the frequency or by substituting A, for A, into (7.7). The
result is

F() = ~4matbp |

(AF2+1) ¢, (A) ] du Smubu

I—(AF2+ 1) q(AH)] dt ~ AFx*
32mma’p v\t [t du(r)/dr
BRI e (77) L or (18)

and the quantity C% = 32/3(A¥2 + 1) k*2 may be defined as the history coefficient
for the oblate spheroid accelerating along its axis of symmetry.
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The expression for the drag on a circular disk accelerating along the direction
normal to its surface is obtained by letting A — 0 in (7.8). The result is

du 128a20 (v\? (* du(r)/dr
= 848, %% _ _ v auT)ar
Ft) = 30°P 16pau 3 (7;-) f—w =t dr. (7.9)

The history coefficient for the circular disk is Cp = 128/37%. When the spheroid
becomes a sphere, i.e. A;—> 0, (7.7) and (7.8) both approach the result obtained
by Basset (1888) and by Landau & Lifshitz (1959).

Prolate spheroid Oblate spheroid
r A Bl e A At
afb c, Cy, cy 1 ay cy
1-0 0-5000 1-0000 6-0000 0-5000 1-0000 6-0000
1-5 0-3037 1-1017 7-2820 0-8047 0-9352 5:2479
2:0 0-2100 1-2039 8-6968 1-1151 0-9053 4-9175
3-0 0-1220 1-4045 11-8351 1-7426 0-8787 4-6325
4-0 0-0816 1-5979  15-3205 2-3743 0-8673 4-5137
5-0 0-0591 1-7848  19-1133 3:0078 0-8615 4-4526
6-0 0-0452 1-9659  23-1895 3-6422 0-8580 4-4169
7-0 0-0358 2-1421  27-5324 4-2772 0-8558 4:3942
8:0 0-0293 2:3141  32-1291 4-9126 0-8543 4-3788
9:0 0-0244 2-4822  36-9692 5-5483 0-8532 4:3680
10-0 0-0207 2-6471  42-0440 6-1841 0-8525 4-3600
o 0 oo w0 e 0-8488 4-3231

TaBLE 1. Added mass, viscous and history coefficients for some prolate and
oblate spheroids

Finally, it is convenient to write the approximate drag on a spheroid moving
in an arbitrary manner along its axis of symmetry in the following form:

¢ du(r)/dr

Iy e dr, (7.10)

F(t) = —m0, P 0, 6muRu—Cyy Ap (5)1} f
dat m

where m is the mass of displaced fluid, C, is the added mass coefficient, C;- is the
viscous shape coefficient for Stokes steady-state drag, R is dimension b for the
prolate spheroid and dimension ¢ for the oblate spheroid, Cy; is the history
coefficient and A4 is the cross-sectional area normal to the motion. For some
representative values of a/b, C,, O, and Cy for prolate and oblate spheroids are
given in table 1.
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